Tags

, , ,

WiFi Spectrum Analyzer considerations
– Frequency
– Form factor
– Price
– Hardware Platform
– Resolution
– Supporting Software
– WiFi integration

Free Space Path Loss(FSPL)
FSPL isthe loss of signal energy caused by the natural broadening of the waves, often referred to as beam divergence.

If distance(d) in miles between antenna, ferequency (f) in MHz then FSPL in dB.

FSPL=36.6 + 20log (f) + 20log(d)

If distance(d) in kilometers between antenna, frequency (f) in MHz then FSPL in dB

FSPL=32.4 + 20log (f) + 20log(d)

Received Signal Strength Indicator (RSSI)
RSSI is a metric that is specified by measuring the amount of energy associated with the bits received via wireless NIC.

Noise Floor
Noise floor is the ambient or background level of radio energy on  the specific channel you are analyzing. For wireless NIC to report noise,it has to receive data bits, without that NIC will report as noise variable of zero.

Signal to Noise Ratio (SNR)
SNR can be presented as a dB value or as the difference between the RSSI(signal) and the noise floor(noise). Better the SNR is better the performance.CWAP-Spectrum-01Receive Sensitivity
Receive Sensitivity refers to the power level of an RF signal required to be successfully received by the receiver radio.

Wired & Wireless NIC
Wireless NIC must use its antenna and encoding filter to keep out all unwanted RF signals and thus unwanted bits as well. Also wireless NIC will use some of the specific information gleaned from the RF to bit transition process to actually add information to the wireless frame.

This additional information is added at the receiving station and is in addition to the bits send from the source. This added information called Radiotap Header. Below shows a Radiotap header information of a received beacon frame by a wifi sniffer NIC. All these information is reference to Rx station & not reference to Tx STA.

CWAP-Spectrum-02RF signal can represent in either time domain or frequency domain. Once you do Fast Fourier Transformation (FFT) for a time domain signal you can get the Frequency domain signal. In RF, mostly Frequency Domain representation is more useful. Hear are some different views available in a spectrum analyzer.

Real Time FFT
Frequency represent in horizontal axis and the energy in dBm defined in vertical axis

f1118Spectrogram Graph (Waterfall plot)
This use the same data from Real Time FFT, but with the addition of time dimension. In this view vertical axis shows the historical data. In this case energy in dB values represent in colors (Blue to RED to represent weaker to stronger energy).

f1119Spectrum Density
Horizontal axis represent frequency & vertical axis represent energy in dBm with brightness of color being determined by how many times that specific bit of information has been captured.

f1120Duty Cycle
This view displays the percentage of time the ambient RF signal is higher than the noise floor or other predefined signal threshold. In this veiw you can see whether a device is constantly using a frequency (100% duty cycle on a particular channel mean it is not usable & caused by sort of jammers)

f1121WiFi integration
When spectrum analyzer has WiFi integration capability, it can combined those views. WiFi NIC can scan other channels & report that information to give a overall view on a particular band.

f1122Here are some RF signatures of particular devices. (Note that all images taken from the CWAP official study guide & George’s my80211.com)

1. Frequency Hopping Portable 2.4GHz telephone

Here is a Real Time FFT view f1134Here is a same with all different views (FFT, Duty Cycle, Spetrogram)

bluetooth2. Frequency Hopping Portable 5GHz telephone

f11353. Bluetooth Discovery
In discovery mode bluetooth device use pseduorandom frequency selection resulting frequency hopping on the entire 2.4GHz band. Due to fixed pseudorandom sequence all those energy peaks occur at regular interval leaving dots are line up in spectrogram view.

f1131

f11324. Bluetooth device in operating mode.
In this mode fully random distribution of hotspots (as no fixed psedurandom) in spectrogram view.

bluetooth5. Real-time FFT of Logitec Analog mouse
It has a narrow signal that drop off quickly.

 

6. Real-time FFT of narrow-band jammer

F1142Duty Cycle of narrow-band jammer

f1143 7. Real-time FFT of 2.4GHz wide band jammer

f1144f11468. Real-time FFT of Analog Video Camera

f1150f11529. Microwave Oven

f1153

 

References
1. CWAP Official Study Guide – Chapter 11